Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species.

Identifieur interne : 002040 ( Main/Exploration ); précédent : 002039; suivant : 002041

Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species.

Auteurs : Ada Pastor [États-Unis] ; Zacchaeus G. Compson ; Paul Dijkstra ; Joan L. Riera ; Eugènia Martí ; Francesc Sabater ; Bruce A. Hungate ; Jane C. Marks

Source :

RBID : pubmed:25214242

Descripteurs français

English descriptors

Abstract

Leaf litter decomposition plays a major role in nutrient dynamics in forested streams. The chemical composition of litter affects its processing by microorganisms, which obtain nutrients from litter and from the water column. The balance of these fluxes is not well known, because they occur simultaneously and thus are difficult to quantify separately. Here, we examined C and N flow from streamwater and leaf litter to microbial biofilms during decomposition. We used isotopically enriched leaves ((13)C and (15)N) from two riparian foundation tree species: fast-decomposing Populus fremontii and slow-decomposing Populus angustifolia, which differed in their concentration of recalcitrant compounds. We adapted the isotope pool dilution method to estimate gross elemental fluxes into litter microbes. Three key findings emerged: litter type strongly affected biomass and stoichiometry of microbial assemblages growing on litter; the proportion of C and N in microorganisms derived from the streamwater, as opposed to the litter, did not differ between litter types, but increased throughout decomposition; gross immobilization of N from the streamwater was higher for P. fremontii compared to P. angustifolia, probably as a consequence of the higher microbial biomass on P. fremontii. In contrast, gross immobilization of C from the streamwater was higher for P. angustifolia, suggesting that dissolved organic C in streamwater was used as an additional energy source by microbial assemblages growing on slow-decomposing litter. These results indicate that biofilms on decomposing litter have specific element requirements driven by litter characteristics, which might have implications for whole-stream nutrient retention.

DOI: 10.1007/s00442-014-3063-y
PubMed: 25214242


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species.</title>
<author>
<name sortKey="Pastor, Ada" sort="Pastor, Ada" uniqKey="Pastor A" first="Ada" last="Pastor">Ada Pastor</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department d'Ecologia, Universitat de Barcelona, Barcelona, Spain, adapastor@ub.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department d'Ecologia, Universitat de Barcelona, Barcelona, Spain</wicri:regionArea>
<orgName type="university">Université de Barcelone</orgName>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Compson, Zacchaeus G" sort="Compson, Zacchaeus G" uniqKey="Compson Z" first="Zacchaeus G" last="Compson">Zacchaeus G. Compson</name>
</author>
<author>
<name sortKey="Dijkstra, Paul" sort="Dijkstra, Paul" uniqKey="Dijkstra P" first="Paul" last="Dijkstra">Paul Dijkstra</name>
</author>
<author>
<name sortKey="Riera, Joan L" sort="Riera, Joan L" uniqKey="Riera J" first="Joan L" last="Riera">Joan L. Riera</name>
</author>
<author>
<name sortKey="Marti, Eugenia" sort="Marti, Eugenia" uniqKey="Marti E" first="Eugènia" last="Martí">Eugènia Martí</name>
</author>
<author>
<name sortKey="Sabater, Francesc" sort="Sabater, Francesc" uniqKey="Sabater F" first="Francesc" last="Sabater">Francesc Sabater</name>
</author>
<author>
<name sortKey="Hungate, Bruce A" sort="Hungate, Bruce A" uniqKey="Hungate B" first="Bruce A" last="Hungate">Bruce A. Hungate</name>
</author>
<author>
<name sortKey="Marks, Jane C" sort="Marks, Jane C" uniqKey="Marks J" first="Jane C" last="Marks">Jane C. Marks</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25214242</idno>
<idno type="pmid">25214242</idno>
<idno type="doi">10.1007/s00442-014-3063-y</idno>
<idno type="wicri:Area/Main/Corpus">002008</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002008</idno>
<idno type="wicri:Area/Main/Curation">002008</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002008</idno>
<idno type="wicri:Area/Main/Exploration">002008</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species.</title>
<author>
<name sortKey="Pastor, Ada" sort="Pastor, Ada" uniqKey="Pastor A" first="Ada" last="Pastor">Ada Pastor</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department d'Ecologia, Universitat de Barcelona, Barcelona, Spain, adapastor@ub.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department d'Ecologia, Universitat de Barcelona, Barcelona, Spain</wicri:regionArea>
<orgName type="university">Université de Barcelone</orgName>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Compson, Zacchaeus G" sort="Compson, Zacchaeus G" uniqKey="Compson Z" first="Zacchaeus G" last="Compson">Zacchaeus G. Compson</name>
</author>
<author>
<name sortKey="Dijkstra, Paul" sort="Dijkstra, Paul" uniqKey="Dijkstra P" first="Paul" last="Dijkstra">Paul Dijkstra</name>
</author>
<author>
<name sortKey="Riera, Joan L" sort="Riera, Joan L" uniqKey="Riera J" first="Joan L" last="Riera">Joan L. Riera</name>
</author>
<author>
<name sortKey="Marti, Eugenia" sort="Marti, Eugenia" uniqKey="Marti E" first="Eugènia" last="Martí">Eugènia Martí</name>
</author>
<author>
<name sortKey="Sabater, Francesc" sort="Sabater, Francesc" uniqKey="Sabater F" first="Francesc" last="Sabater">Francesc Sabater</name>
</author>
<author>
<name sortKey="Hungate, Bruce A" sort="Hungate, Bruce A" uniqKey="Hungate B" first="Bruce A" last="Hungate">Bruce A. Hungate</name>
</author>
<author>
<name sortKey="Marks, Jane C" sort="Marks, Jane C" uniqKey="Marks J" first="Jane C" last="Marks">Jane C. Marks</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biofilms (growth & development)</term>
<term>Biomass (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Carbon Cycle (MeSH)</term>
<term>Carbon Isotopes (metabolism)</term>
<term>Ecosystem (MeSH)</term>
<term>Microbiota (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen Cycle (MeSH)</term>
<term>Nitrogen Isotopes (metabolism)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (microbiology)</term>
<term>Populus (chemistry)</term>
<term>Populus (classification)</term>
<term>Rivers (chemistry)</term>
<term>Rivers (microbiology)</term>
<term>Species Specificity (MeSH)</term>
<term>Trees (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (composition chimique)</term>
<term>Azote (métabolisme)</term>
<term>Biofilms (croissance et développement)</term>
<term>Biomasse (MeSH)</term>
<term>Carbone (métabolisme)</term>
<term>Cycle de l'azote (MeSH)</term>
<term>Cycle du carbone (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Isotopes de l'azote (métabolisme)</term>
<term>Isotopes du carbone (métabolisme)</term>
<term>Microbiote (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (composition chimique)</term>
<term>Rivières (composition chimique)</term>
<term>Rivières (microbiologie)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Carbon Isotopes</term>
<term>Nitrogen</term>
<term>Nitrogen Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
<term>Rivers</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Arbres</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Rivières</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Biofilms</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Biofilms</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Rivières</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Rivers</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Carbone</term>
<term>Isotopes de l'azote</term>
<term>Isotopes du carbone</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Carbon Cycle</term>
<term>Ecosystem</term>
<term>Microbiota</term>
<term>Nitrogen Cycle</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Cycle de l'azote</term>
<term>Cycle du carbone</term>
<term>Microbiote</term>
<term>Spécificité d'espèce</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leaf litter decomposition plays a major role in nutrient dynamics in forested streams. The chemical composition of litter affects its processing by microorganisms, which obtain nutrients from litter and from the water column. The balance of these fluxes is not well known, because they occur simultaneously and thus are difficult to quantify separately. Here, we examined C and N flow from streamwater and leaf litter to microbial biofilms during decomposition. We used isotopically enriched leaves ((13)C and (15)N) from two riparian foundation tree species: fast-decomposing Populus fremontii and slow-decomposing Populus angustifolia, which differed in their concentration of recalcitrant compounds. We adapted the isotope pool dilution method to estimate gross elemental fluxes into litter microbes. Three key findings emerged: litter type strongly affected biomass and stoichiometry of microbial assemblages growing on litter; the proportion of C and N in microorganisms derived from the streamwater, as opposed to the litter, did not differ between litter types, but increased throughout decomposition; gross immobilization of N from the streamwater was higher for P. fremontii compared to P. angustifolia, probably as a consequence of the higher microbial biomass on P. fremontii. In contrast, gross immobilization of C from the streamwater was higher for P. angustifolia, suggesting that dissolved organic C in streamwater was used as an additional energy source by microbial assemblages growing on slow-decomposing litter. These results indicate that biofilms on decomposing litter have specific element requirements driven by litter characteristics, which might have implications for whole-stream nutrient retention. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25214242</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>176</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species.</ArticleTitle>
<Pagination>
<MedlinePgn>1111-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-014-3063-y</ELocationID>
<Abstract>
<AbstractText>Leaf litter decomposition plays a major role in nutrient dynamics in forested streams. The chemical composition of litter affects its processing by microorganisms, which obtain nutrients from litter and from the water column. The balance of these fluxes is not well known, because they occur simultaneously and thus are difficult to quantify separately. Here, we examined C and N flow from streamwater and leaf litter to microbial biofilms during decomposition. We used isotopically enriched leaves ((13)C and (15)N) from two riparian foundation tree species: fast-decomposing Populus fremontii and slow-decomposing Populus angustifolia, which differed in their concentration of recalcitrant compounds. We adapted the isotope pool dilution method to estimate gross elemental fluxes into litter microbes. Three key findings emerged: litter type strongly affected biomass and stoichiometry of microbial assemblages growing on litter; the proportion of C and N in microorganisms derived from the streamwater, as opposed to the litter, did not differ between litter types, but increased throughout decomposition; gross immobilization of N from the streamwater was higher for P. fremontii compared to P. angustifolia, probably as a consequence of the higher microbial biomass on P. fremontii. In contrast, gross immobilization of C from the streamwater was higher for P. angustifolia, suggesting that dissolved organic C in streamwater was used as an additional energy source by microbial assemblages growing on slow-decomposing litter. These results indicate that biofilms on decomposing litter have specific element requirements driven by litter characteristics, which might have implications for whole-stream nutrient retention. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pastor</LastName>
<ForeName>Ada</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department d'Ecologia, Universitat de Barcelona, Barcelona, Spain, adapastor@ub.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Compson</LastName>
<ForeName>Zacchaeus G</ForeName>
<Initials>ZG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dijkstra</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riera</LastName>
<ForeName>Joan L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martí</LastName>
<ForeName>Eugènia</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sabater</LastName>
<ForeName>Francesc</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hungate</LastName>
<ForeName>Bruce A</ForeName>
<Initials>BA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marks</LastName>
<ForeName>Jane C</ForeName>
<Initials>JC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018441" MajorTopicYN="N">Biofilms</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057486" MajorTopicYN="N">Carbon Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="Y">Microbiota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058458" MajorTopicYN="N">Nitrogen Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045483" MajorTopicYN="N">Rivers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25214242</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-014-3063-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2004 Aug;140(3):458-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15179578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 6;292(5514):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2005 Jun 15;39(12 ):4640-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16047804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2002 Oct 1;74(19):4905-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12380811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 Feb;93(2):345-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Nov;170(3):695-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2002 Jan;43(1):55-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11984629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2015 Aug;90(3):669-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24935280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 19;315(5810):361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17234944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jan 17;451(7176):293-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Jul;136(2):261-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12759813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Oct;87(10):2559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17089664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Aug;79(16):4965-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23770903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 1984 Dec;10(4):335-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24221176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 15;336(6087):1438-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22700929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Jul;94(4):457-471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Jun;25(6):372-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20189677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Jan;87(1):255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16634316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Apr;123(1):99-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):795-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2013 Jul;94(7):1604-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23951720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Oct;11(10):1065-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2013 Jul;94(7):1614-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23951721</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Catalogne</li>
</region>
<settlement>
<li>Barcelone</li>
</settlement>
<orgName>
<li>Université de Barcelone</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Compson, Zacchaeus G" sort="Compson, Zacchaeus G" uniqKey="Compson Z" first="Zacchaeus G" last="Compson">Zacchaeus G. Compson</name>
<name sortKey="Dijkstra, Paul" sort="Dijkstra, Paul" uniqKey="Dijkstra P" first="Paul" last="Dijkstra">Paul Dijkstra</name>
<name sortKey="Hungate, Bruce A" sort="Hungate, Bruce A" uniqKey="Hungate B" first="Bruce A" last="Hungate">Bruce A. Hungate</name>
<name sortKey="Marks, Jane C" sort="Marks, Jane C" uniqKey="Marks J" first="Jane C" last="Marks">Jane C. Marks</name>
<name sortKey="Marti, Eugenia" sort="Marti, Eugenia" uniqKey="Marti E" first="Eugènia" last="Martí">Eugènia Martí</name>
<name sortKey="Riera, Joan L" sort="Riera, Joan L" uniqKey="Riera J" first="Joan L" last="Riera">Joan L. Riera</name>
<name sortKey="Sabater, Francesc" sort="Sabater, Francesc" uniqKey="Sabater F" first="Francesc" last="Sabater">Francesc Sabater</name>
</noCountry>
<country name="États-Unis">
<region name="Catalogne">
<name sortKey="Pastor, Ada" sort="Pastor, Ada" uniqKey="Pastor A" first="Ada" last="Pastor">Ada Pastor</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002040 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002040 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25214242
   |texte=   Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25214242" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020